Recitation 2.2




Outline

A quick recap of project 2 optimizations
An example write-up

Some remarks from homework 4
Homework 5 Introduction

Attendance

Remaining time is used as “lab time” to make progress in hw5/ project 2

e Announcement: The class will be held via Zoom on April 2 (Wednesday)



An example of a good project write up

e *Opens a pdf*



Common hw4 mistake - Which one is parallelized?

int fib(int n) { LIS LA )
if (n < 2) { 1f (n<2) 4

return n; return n;

) }
int x,y; 1Nt X,Y;
cilk_scope {

x = cilk_spawn fib(n - 1);

cilk_scope {
cilk_spawn fib(n - 1);
fFib(n - 2); )
y = fib(n - 2);

T 5 L s return x + y;




Common mistake in HW4

int fib(int n) { s ARELmeE )
if (n<2){ if (n<2) {
return n; SEEL L
}
int x,y;

}
J

int x,y;
cilk_scope { cilk_scope { | .
cilk_spawn fib(n - 1); X = cilk_spawn fib(n - 1);

fib(n - 2);

1

J

y = fib(n - 2);
return x + y;

return x + y;




Answering Write-ups

e Your code might not be perfect. Don't just refer me to Git, but show
proofs of execution for write-ups like the following:

Write-up 6: Use a reducer to parallelize queens. Verify that the answers you're getting ar
consistent with the serial code from before. Validate you have no races with
make -B CILKSAN=1 && . /queens



Malloc and Free




Malloc, Free, and Realloc

void* addr = malloc(size t size)
e Allocates a chunk of memory of size size
volid free (void* addr)

e Frees the allocated chunk of memory starting at addr



Free Lists




Free Lists

Keeps track of deallocated memory

Allows us to reuse memory

Most memory allocators use a freelist of some sort
Can implement as a singly linked list as seen in lecture



Allocating Memory w/ Free Lists
(fixed size blocks)




Before:

After:

free

A

free

& 2008-2019 by the MIT 6.172 Lecturers



A .

free

Allocate 1 object

x = free;
free = free->next;
return x;

& 2008-2019 by the MIT 6.172 Lecturers



A

free
r x/

Allocate 1 object

X = free;
free = free->next;
return x;

& 2008-2019 by the MIT 6.172 Lecturers



——
A . .

free ) /

Allocate 1 object

x = free;
free = free->next; Should check
return x; free != NULL.

& 2008-2019 by the MIT 6.172 Lecturers e



——
A . .

free ) /

Allocate 1 object

x = free;
free = free->next; Should check
return x; free != NULL.

& 2008-2019 by the MIT 6.172 Lecturers e



A

free

Allocate 1 object

x = free;
free = free->next;
return x;

& 2008-2019 by the MIT 6.172 Lecturers 21



Freeing Memory w/ Free Lists
(fixed size blocks)




X
Before: @
free

After: A -T {




X
A
free
Allocate 1 object free object x
x = free; x->next = free;
free = free->next; free = x;
return x;

& 2008-2019 by the MIT 6.172 Lecturers 22



X
A
free
Allocate 1 object free object x
x = free; x->next = free;
free = free->next; free = x;
return x;

& 2008-2019 by the MIT 6.172 Lecturers 23



X
A
free
Allocate 1 object free object x
x = free; x->next = free;
free = free->next; free = x;
return x;

& 2008-2019 by the MIT 6.172 Lecturers 24



A [used |y

!

free

=L

Allocate 1 object

x = free;

return x;

free = free->next;

& 2008-2019 by the MIT 6.172 Lecturers

free object x

x->next = free;
free = x;

)




What does a freed block look like?

Freelist node struct *Need to make sure Freelist node struct is
smaller than the size of the block

addr




Binned Free Lists




Binned Free Lists

e Allocate chunks of memory at specific sizes
(i.e. round up user’s requested size to the next power of 2)
e Maintain free lists for these different sizes
e Need to keep track of chunk sizes
The user will only give us the pointer, not the size!
e Store this information in headers.

addr

header actual memory the user receives




Binned Free Lists

o Leverage the efficiency of free lists.

e Accept a bounded amount of internal fragmentation.

0| = P b Bin k holds memory
1L blocks of size 2k.

2| —— — >

r| e > >

£ 2008-2019 by the MIT 6.172 Lecturers

29



Fragmentation




What is fragmentation?

e Memory is broken apart into many pieces
e Even if you have X amount of memory available, if it's not contiguous, you
can't allocate it as a chunk of memory of size X.

N .

VS




Types of Fragmentation

External fragmentation:

e Blocks are scattered across virtual memory, making remaining memory
non-contiguous (previous slide)

Internal fragmentation:

e The difference in how much memory the user requested and how much
we actually allocated (i.e. due to headers)

addr




Strategies for Mitigating Fragmentation

e Splitting : dividing a large free block into smaller pieces, depending on
how much memory the user requested
(allows you to “fill in” large gaps of free memory in your heap)

e (Coalescing : merging together adjacent free blocks into a single, large free
block



	Slide 1: Recitation 2.2
	Slide 2: Outline
	Slide 5: An example of a good project write up
	Slide 6: Common hw4 mistake – Which one is parallelized?
	Slide 7: Common mistake in HW4
	Slide 8: Answering Write-ups
	Slide 9: Malloc and Free
	Slide 10: Malloc, Free, and Realloc
	Slide 11: Free Lists
	Slide 12: Free Lists
	Slide 13: Allocating Memory w/ Free Lists (fixed size blocks)
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Freeing Memory w/ Free Lists (fixed size blocks)
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: What does a freed block look like?
	Slide 27: Binned Free Lists
	Slide 28: Binned Free Lists
	Slide 29
	Slide 31: Fragmentation
	Slide 32: What is fragmentation?
	Slide 33: Types of Fragmentation
	Slide 34: Strategies for Mitigating Fragmentation

